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Abstract— In this work, we demonstrate that the position
tracking performance of a quadrotor may be significantly
improved for forward and vertical flight by incorporating
simple lumped parameter models for induced drag and thrust,
respectively, into the quadrotor dynamics and modifying the
controller to compensate for these terms. We further show that
the parameters for these models may be easily and accurately
identified offline from forward and vertical flight data. We
demonstrate that the simple drag compensating controller can
reduce the position error in the direction of forward flight in
steady state by 75%, and that the controller using a more
accurate thrust model, dubbed the “refined” thrust model, can
improve the position error by 72% in the vertical direction.

I. INTRODUCTION

The use of micro-aerial vehicles and especially quadrotors
has seen a rapid growth in the past few years. These
vehicles have been used in various applications such as aerial
photography, surveillance, inspection of structures [1], and
even agricultural monitoring [2]. Future applications involve
search and rescue and emergency response [3]. One of the
main advantages of aerial vehicles over ground based ones is
the ability to move quickly in 3D environments unhindered
by rugged terrain.

During high speed and even moderate flight regimes,
quadrotors are affected by a variety of aerodynamic effects
such as blade flapping, induced drag, and thrust variation due
to changes in induced velocity. As the speed of the quadrotor
increases, these aerodynamic effects become more significant
and start affecting the control of the robot. Because we
wish to use quadrotors to complete time sensitive tasks,
we need to fly in regimes in which these aerodynamics
effects are not negligible. To maintain precise control of the
quadrotor, we need to accurately model and compensate for
these aerodynamic effects.

The aerodynamics of quadrotors have not received as
much interest by the research community as have those of
fixed wing aircraft, and most of the work in this field is based
on classical work on helicopter aerodynamics [4], [5]. In [6]
and [7], a model for induced drag is derived and a velocity
estimator is implemented using this model, but they do not
compensate for this induced drag in the control loop.

In [8], blade element momentum theory (BEMT) is used to
derive a more precise thrust model for quadrotor propellers.
However, this model is presented as a function of the induced
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Fig. 1. The Ascending Technologies Hummingbird quadrotor used in our
experiments.

velocity at the actuator disk, which is not characterized.
Furthermore, no experimental data is used to validate this
model.

In [9], the authors analyze and compensate for the aero-
dynamic effects on quadrotors, but they primarily look at
performance during transient behavior such as is seen in
stall turn maneuvers, whereas we look at reducing steady
state errors during forward and vertical flight.

This work presents multiple contributions. We demonstrate
that incorporating simple lumped parameter models for drag
and propeller aerodynamics into the quadrotor dynamics and
compensating for them in a control loop can reduce the RMS
position error during tracking of constant-velocity trajecto-
ries by up to 75%. We show that this reduction in error
is consistent over many repeated trials, validating models
proposed in previous works that have not been extensively
tested. We further demonstrate that the parameters for these
models may be identified offline using flight data in which
the mass and speed of the quadrotor are varied.

This paper is outlined as follows. In Section 2, we present
the models used to characterize the varying aerodynamic
effects on the quadrotor. In Section 3, we discuss system
identification for these models and describe the experiments
that we used to identify the model parameters. In Section 4,
we discuss how these aerodynamics effects are compensated
for in the control system. Finally, Section 5 describes the
experimental results where we compare controllers with and
without compensating for the modeled aerodynamic effects.

II. AERODYNAMIC MODELING

This section covers two topics: modeling the induced drag
of a quadrotor and modeling the thrust variation due to the
velocity of the quadrotor. We express vector quantities in one



of two coordinate systems: a right-handed world coordinate
system W in which the x direction points North, the y
direction points West, and the z direction points up, and
a right-handed body coordinate system B where the origin
is at the center of mass and the x direction is the front of
the quadrotor, the y direction is to the left of the quadrotor
and the z direction upwards as given by the right-hand rule.
These coordinate frames can be seen in Figure 2.
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Fig. 2. World and body coordinate frames used to express vector quantities.

A. Linear Drag Model

We choose to compensate for the induced drag which, as
shown in Figure 3, is in the x-y plane of the quadrotor.

Fig. 3. Free body diagram of the quadrotor model showing the thrust, drag
and gravitational forces.

The induced drag is linear in the body x-y velocity of the
quadrotor. We make this decision because induced drag is
simple to model and it has a significant effect on small-scale
aerial vehicles with rigid blades [10]. In addition, many other
sources of drag and drag-like effects may be approximated
as linear in the body x-y velocity including blade flapping,
profile drag, and translational drag, so this model captures
them as well. We consider parasitic drag negligible in our
flight regime. The model used for induced drag was proposed
in [6] and further simplified in [7]. Using this model, the drag
force D on the quadrotor is modeled as:

D = �kd!sRPR
T V (1)

where V is the velocity of the quadrotor expressed in the
world frame, kd is the drag constant, R is the orientation

of the quadrotor expressed as a rotation matrix which takes
points from the body frame to the world frame, !s =P4

i=1 !i is the sum of the motor speeds !i, and P is the
projection matrix:

P =

241 0 0
0 1 0
0 0 0
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The equations of motion for the quadrotor are then mod-

ified to include the drag force and moment:
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where m is the mass of the quadrotor, F is the magnitude
of the applied thrust, e3 =

�
0 0 1

�T
is the third standard

basis vector, 
 is the angular velocity vector expressed in
the body frame, J is the inertia tensor in the body frame,
M is the net applied moment, and h is the height of the
propellers above the center of mass.

B. Thrust Model

We refer to the commonly used thrust model given by Ti =
k!!

2
i as the “standard” thrust model, where Ti is the thrust

produced by the ith propeller and k! is a positive constant
that is determined experimentally. A more accurate lumped
parameter model derived using blade-element momentum
theory in [8] is given by

Ti = c1!
2
i
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where c1 and c2 are positive constants and �i and �i are the
advance and inflow ratios, respectively. These are given:

�i =
Vhi + vhi

r!i
(5)

�i =
Vzi + vzi

r!i
(6)

In the above equations, r is the radius of the propeller, Vhi

and Vzi are the horizontal and vertical components of the
velocity of the ith propeller in the body frame, and vhi and
vzi are the horizontal and vertical components, respectively,
of the induced velocity through the ith propeller.

We make the following assumptions:
1) The propeller is sufficiently rigid so that the flapping

angle is small, and the horizontal induced velocity
vhi � 0. Hence, the induced velocity of the ith

propeller becomes vi � vzi.
2) The induced velocity vi is independent of the hori-

zontal velocity Vhi, and is a function of the vertical
speed of the propeller Vzi and motor speed !i. This is
because Vhi is much smaller compared to the rotor tip
speed than Vzi is compared to the induced velocity vi,
so Vzi dominates the effective angle of attack of the
blade.

In order to find the relationship between vi, !i and Vzi,
we collected data by flying the quadrotor upwards and



downwards at varying speeds Vz from �2 m s�1 to 2 m s�1

while logging the motor speeds !i. We also added small
weights to the robot to get data with different values of
the mass m. Then, we computed the induced velocity from
momentum theory [5]:

Ti = 2�Avi (vi + Vz) (7)

where � is the density of air, A is the area swept out by
the propeller and for the constant velocity vertical flight, the
thrust per propeller Ti � mg=4.

We plotted vi against 1
4!s and Vz , and found that a linear

model fit the data well, with an adjusted R2 value of 0.974.
The regression is shown in Figure 4. Thus, we model vi as
linear in !i and Vzi with positive constants a and b:

vi (!i; Vzi) = a!i � bVzi (8)

Fig. 4. Linear regression of the average induced velocity vi against the
average motor speed and the vertical velocity Vz .

Using (5), (6), (8) and the above mentioned assumptions,
we can simplify (4) to the “refined” thrust model:

Ti = k!!
2
i � kzVzi!i + khV

2
hi (9)

where k! , kz , and kh are positive constants that are
determined experimentally.

III. SYSTEM IDENTIFICATION

In this section we describe the design of the experiments
used to identify the parameters of the models described in (1)
and (9), i.e. the drag coefficient kd and the thrust coefficients
k! , kz , and kh.

A. Identifying the Induced Drag Coefficient

The drag coefficient kd can be identified using accelerome-
ter and velocity data during forward flight. The accelerometer
measures the specific acceleration of the quad (the accel-
eration minus acceleration due to gravity), which is the
acceleration due to thrust and the drag forces [7], plus a
constant bias:

aIMU = RT ( _V + ge3) + ba (10)

where ba is the bias of the accelerometer. We may expand
this expression by substituting (2) into it. In forward flight,
the x component of aIMU becomes:

aIMUx = �kd

m
!sVx cos � + bax (11)

where Vx is the x component of the quadrotor velocity and
� is the pitch angle.

To identify kd, we flew the quadrotor in hover and
forward flight at speeds varying from 0 m s�1 to 8 m s�1 with
increments of 0:25 m s�1 and fit a least squares linear model
to the measured accelerometer, velocity, and commanded
motor speed data. Only the data from the constant velocity
segments of the trajectories was used in the linear regression.
We assumed that the response of the motor controllers is fast
so that the motor RPMs settle down to steady state values
in the constant velocity segment of the trajectory. The data
fit well with an R2 value of 0.975, giving an estimate of the
drag coefficient k̂d = 1:314� 10�5 N�s

m�RPM . The plot of this
data is shown in Figure 5.

Fig. 5. Least squares linear regression used to compute the induced drag
coefficient kd.

B. Identifying the Thrust Coefficients

Summing (9) over all four propellers and assuming Vzi =
Vz and Vhi = Vh (this is a good assumption when 
 � 0,
which is satisfied in our experiments) gives:

4X
i=1

Ti = k!

4X
i=1

!2
i � kzVz

4X
i=1

!i + 4khV
2

h (12)

During the constant velocity vertical flight,
P4

i=1 Ti �
mg and during horizontal flight,

P4
i=1 Ti � m � aIMUz ,

where aIMUz is the z reading of the accelerometer, as-
suming that the accelerometer bias is small. The thrust
coefficients k! , kz , and kh were identified by fitting a least
squares linear model to vertical and forward flight data
using (12), in which all the other quantities are known.
The quality of the fit was very good with an R2 value of
0.955. A plot of a linear regression used to compute the
parameters k! and kz from vertical flight data is shown
in Figure 6. The identified parameter values are k̂! =




